

## ORGANISATION INDUSTRIELLE

**SEQUENCE 6** 

Mesure de la performance industrielle

Activité 4

#### Tableau de bord

## Présentation :

L'entreprise Beltier fabrique des viennoiseries (croissants, pains au chocolat, pains au lait, etc.).

Les produits sont emballés individuellement ou par lot selon la demande des clients (réseaux de grande distribution).

L'emballage se fait automatiquement à l'aide de machines appelées « Conditionneuse » (voir figure ci-contre).

Un opérateur se charge du bon fonctionnement du parc machine : il veille en particulier à ce que les machines disposent toujours de film d'emballage ; il désencombre les éventuels bourrages qui surviennent en sortie de machine ; sa présence est donc indispensable sans quoi, très rapidement, les machines se mettent en arrêt.



Conditionneuse: machine à emballer les viennoiseries

Dans la suite, on considère des conditionnements individuels de pains au lait, comme sur la photo.

#### Données:

Taille du parc machine : 3 emballeuses

Cadence nominale par machine (source *Méthodes*) :  $C_n = 3 \text{ s}^{-1}$ 

Un rouleau de film permet d'emballer 12000 produits.

Durée de changement d'un rouleau :  $T_{ChR} = 4 min$ 

L'atelier de confection et d'emballage des produits fonctionne en 2 x 8 :

|          | Amplitude horaire | Pause*        | Pause déjeuner |
|----------|-------------------|---------------|----------------|
| Equipe 1 | 8h – 17h          | 10h15 – 10h30 | 12h – 13h      |
| Equipe 2 | 17h – 2h          | 19h15 – 19h30 | 21h – 21h30    |

<sup>\*</sup> la production n'est pas arrêtée pendant les pauses de 15 min.

## Travail demandé:

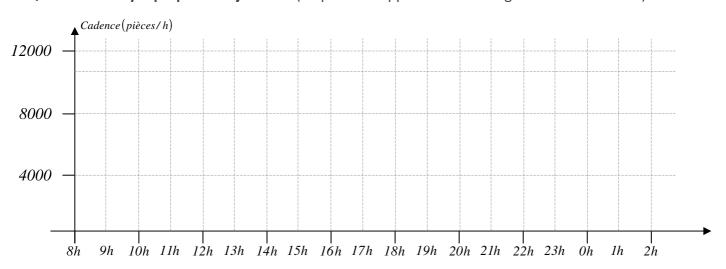
- → <u>Dans un premier temps</u>, on s'attachera à définir et analyser les taux d'engagement et les indicateurs pour la journée d'hier (parties A, B C et D).
- → <u>Dans un second temps</u>, on construira sous Excel un tableau de bord permettant de suivre au quotidien l'évolution du TRS (partie E).

Ceci uniquement pour la zone d'emballage des produits.

## **PARTIE A**

## Analyse des événements

On donne les événements sur la journée d'hier : (TT = 24 heures.)


Des aléas de fonctionnement sont survenus et ont été consignés :

- → Une panne est survenue sur la machine n°3 à 11h; le service maintenance est intervenu et la production est repartie à 11h30.
- → Un défaut d'approvisionnement de produit a stoppé toute la production de 14h à 15h.
- → L'opérateur ayant la charge du parc machine (2<sup>ème</sup> équipe) est arrivé à son poste avec 30 minutes de retard. Son prédécesseur avait alors arrêté les machines avant de quitter son poste.
- → En fin de journée, à 2h du matin, on a dénombré 453924 produits dont 1054 mal emballés.

## Q1 - Identifier les temps :

|                     | Arrêts planifiés | Arrêts non planifiés |              | Sous Cadence | Perdu |
|---------------------|------------------|----------------------|--------------|--------------|-------|
| Arrets plannes      | Propres          | Induits              | Jour Cadence | · c.uu       |       |
|                     |                  |                      |              |              |       |
|                     |                  |                      |              |              |       |
|                     |                  |                      |              |              |       |
|                     |                  |                      |              |              |       |
|                     |                  |                      |              |              |       |
|                     |                  |                      |              |              |       |
| Production de rebut |                  |                      |              |              |       |
| Total               |                  |                      |              |              |       |

Q2 – Tracer le synoptique de la journée. (ne pas faire apparaître les changements de rouleaux)



# **PARTIE B**

# Chiffres-clés pour la journée d'hier

| Q3 – Rappeler le Temps total (TT) :                   |                      |
|-------------------------------------------------------|----------------------|
|                                                       | TT = h               |
| Q4 – Calculer le Temps d'Ouverture (TO) :             |                      |
|                                                       | h                    |
| Q5 – Calculer le Temps Requis (TR) :                  |                      |
| On admettra que le temps cumulé des changements de re | ouleaux vaut 0,82 h. |
|                                                       |                      |
|                                                       |                      |
|                                                       |                      |
|                                                       |                      |
| Q6 – Calculer le Temps de Fonctionnement Brut (TF) :  |                      |
|                                                       |                      |
|                                                       |                      |
|                                                       | TF = h               |
|                                                       |                      |
| Q7 – Calculer le Temps Net (TN) :                     |                      |
|                                                       | h                    |

| Q8 – Calculer le Temps I             | Utile (TU) :                      |                         |              |         |   |
|--------------------------------------|-----------------------------------|-------------------------|--------------|---------|---|
|                                      |                                   |                         |              |         |   |
|                                      |                                   |                         |              | TU =    | h |
|                                      |                                   | PARTIE C                |              |         |   |
| Calc                                 | ul et analyse de                  | s taux d'engagem        | ent (Do – Tp | o – Tq) |   |
| Q9 – Calculer en % à 10 <sup>-</sup> | <sup>2</sup> près la Disponibilit | é Opérationnelle (Do) : |              |         |   |
|                                      |                                   |                         |              | Do =    | % |
| Q10 – La Disponibilité O             | pérationnelle est pl              | utôt :                  | '            |         |   |
| ☐ excellente                         | ☐ correcte                        | ☐ dégradée              | ☐ très dég   | radée   |   |
| Q11 – Calculer en % à 10             | 0 <sup>-2</sup> près le Taux de P | erformance (Tp) :       |              |         |   |
|                                      |                                   |                         |              | Tp =    | % |
| Q12 – Le Taux de Perfor              | mance est plutôt :                |                         |              |         |   |
| ☐ excellent                          | □ correct                         | □ dégradé               | ☐ très dég   | radé    |   |
| Q13 – Calculer en % à 10             | O <sup>-2</sup> près le Taux de Q | ualité (Tq) :           |              |         |   |
|                                      |                                   |                         |              | Tq =    | % |
| Q14 – Le Taux de Qualit              | é est plutôt :                    |                         | '            |         |   |
| ☐ excellent                          | □ correct                         | □ dégradé               | ☐ très dég   | radé    |   |
| Q15 – On en déduit que               | le TRS de cette jour              | née devrait être plutôt | :            |         |   |
| ☐ excellent                          | □ correct                         | □ dégradé               | ☐ très dég   | radé    |   |

# **PARTIE D**

Calcul des indicateurs (TRS – TRG – TRE)

| Q16 – Calculer en % à 10 | o <sup>-1</sup> près le TRS de deu | ux façons différentes : |          |         |   |
|--------------------------|------------------------------------|-------------------------|----------|---------|---|
| Façon 1 :                |                                    |                         |          |         |   |
| Façon 2 :                |                                    |                         |          | TRS =   | % |
|                          |                                    |                         |          |         |   |
| Q17 – On constate que l  | e TRS est effectivem               | ent:                    |          |         |   |
| ☐ excellent              | □ correct                          | ☐ dégradé               | □ très d | légradé |   |
| Q18 – Calculer en % à 10 | ) <sup>-1</sup> près le TRG :      |                         |          |         |   |
|                          |                                    |                         |          | TRG =   | % |
| Q19 – Calculer en % à 10 | ) <sup>-1</sup> près le TRE :      |                         |          |         |   |
|                          |                                    |                         |          | TRE =   | % |

Q20 - Retrouver les résultats à l'aide des calculatrices en ligne :

- → https://www.calcul-trs.fr/
- → <a href="https://www.trs-oee.fr/">https://www.trs-oee.fr/</a>

# **PARTIE E**

Tableau de bord sous Excel



La connaissance d'indicateurs de performance comme le TRS permet de mesurer « l'état de bon fonctionnement » d'un processus comme par exemple une ligne de production.

**Au quotidien**, un chef de service, un responsable d'atelier de production, consulte ces indicateurs au travers d'un **tableau de bord**.

Un tableau de bord offre une vue dynamique (à jour), simple (facile à lire), synthétique et pertinente (sans chichi) des indicateurs dont ont besoin les responsables de production.

Dans l'industrie, des suites logicielles complètes offrent ces vues ; on les appelle des ERP (Enterprise Resource Planning) ou encore parfois appelé PGI (Progiciel de Gestion Intégré) ; ce sont des systèmes d'information qui permet de gérer et suivre au quotidien l'ensemble des informations et des services opérationnels d'une entreprise.



Il est important de noter que de très nombreuses entreprises utilisent un tableur pour concevoir et utiliser ses propres outils de suivi de production. Y compris celles qui utilisent un ERP.



Le tableur qui, de loin, est utilisé est **Microsoft Excel**; sa maîtrise est une compétence indispensable.

On met à votre disposition un classeur Excel.

Le travail à faire est précisé dedans.

Appeler le professeur en cas de difficulté et, en tout état de cause, une fois le travail fini.